诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
地方两会密集点题促消费 今年消费有望明显好转******
本报记者 孟 珂
见习记者 韩 昱
近段时间,地方两会密集召开。多地在政府工作报告中将促消费列为2023年重点工作。
接受《证券日报》记者采访的多位专家表示,在海外主要经济体经济下行风险加大的情况下,2023年我国经济稳健增长将更多依靠内需驱动,其中消费将起到至关重要的作用。随着各地密集部署促消费相关举措,2023年我国消费有望出现明显好转。
多地拼经济
重点“瞄准”促消费
2022年12月份召开的中央经济工作会议提出,要把恢复和扩大消费摆在优先位置。增强消费能力,改善消费条件,创新消费场景。多渠道增加城乡居民收入,支持住房改善、新能源汽车、养老服务等消费。
近期多地将恢复和扩大消费列为2023年工作重点,并作出了具体的工作安排。
例如,安徽芜湖市在2023年政府工作报告中提出重点做好八个方面工作,其中提及要“促进消费持续回暖。增强消费对经济发展的基础性作用,多措并举提升居民收入和消费能力”,并提出要“通过推动供给创新培育消费新增长点,促进聚集性、接触性消费加快恢复。做活线上消费平台,建设新型消费网络节点,网络零售额实现700亿元,增长14%”。
山东济南市在2023年政府工作报告中提出,要“促进消费恢复扩大。积极对标建设国际消费中心城市,着力提高省会消费能级和吸引力”“保持汽车、家电等大宗消费稳定增长”,并提出要“新引进知名首店、品牌店、旗舰店50家以上,促进‘老字号’创新发展”。
星图金融研究院高级研究员付一夫对《证券日报》记者表示,从宏观经济视角来看,当前随着海外主要经济体经济衰退风险加剧,我国出口亦有所承压,此时需要政策端快速释放内需空间,以强化经济增长动力,消费的重要性进一步凸显。
“消费作为最终需求,是畅通国内大循环的关键环节和重要引擎,对经济具有持久拉动力,事关保障和改善民生。”中国国际经济交流中心经济研究部副部长刘向东在接受《证券日报》记者采访时表示,当前各地把恢复和扩大消费摆在优先位置,将有助于更好统筹供给侧结构性改革和扩大内需,使消费潜力充分释放出来,发挥消费对经济循环的牵引带动作用。与此同时,扩大消费还能帮助增加居民收入,提振市场信心,引导经济进入正反馈的良性循环,切实发挥出消费支出对经济增长的基础性支撑作用。
提高居民收入
恢复消费需求
业内人士认为,2022年我国消费市场总体表现较为疲弱。国家统计局数据显示,2022年11月份,社会消费品零售总额38615亿元,同比下降5.9%;2022年1月份至11月份,社会消费品零售总额399190亿元,同比下降0.1%。
在民生银行首席经济学家温彬看来,此前制约消费恢复的因素主要是线下消费场景受限、居民消费能力减弱以及居民消费意愿低迷。不过随着疫情防控措施持续优化,消费场景不断修复,线下接触性、聚集性消费将会逐渐恢复。同时,在稳增长政策支持下,经济将实现温和复苏,带动就业扩大和居民收入增加,从而增强居民消费能力和消费意愿。
刘向东表示,要增强消费能力,改善消费条件,创新消费场景,就要多渠道增加居民收入,提升居民消费能力和意愿,稳定和优化多样化的消费场景。比如,可以加快高速公路(含服务区)、国省干线、农村公路,特别是旅游公路沿线充电基础设施布局建设,支持居民社区、小区等停车场安装充电桩,发挥充电基础设施的网络效应,吸引更多消费者购置新能源汽车。出台新一轮汽车、家电下乡和“以旧换新”补贴政策,引导居民加快汽车、家电等大宗消费品的更新换代。
事实上,不少地方政府已在相关方面部署了具体措施。比如,1月3日,河南省发布《大力提振市场信心促进经济稳定向好政策措施》,提出鼓励各地出台促进汽车消费的惠民政策,将购车补贴政策延续至2023年3月底,对在省内新购汽车按购车价格的5%给予消费者补贴,最高不超过10000元/台,省、市级财政各补贴一半;鼓励各地对智能电子产品和家用电器产品消费进行补贴或开展以旧换新促销活动,将省财政对各地实际财政补贴支出按不超过30%给予奖补政策延续至2023年3月底。
在付一夫看来,恢复消费需求,要从提高居民收入着手,从而达到提振信心的作用。需要继续切实推动就业市场稳定,以确保居民有稳定的收入来源。同时,可以继续为中小微企业纾困解难,缓解市场主体的经营压力,继而稳定就业岗位。
“还可以考虑针对特定行业发放消费券,有利于在降低消费者消费成本、增加消费意愿的同时,带动行业回暖。”付一夫进一步表示。(证券日报)
(文图:赵筱尘 巫邓炎)