《中国经济周刊》首席摄影肖翊|摄
从技术到产业,万亿级市场按下启动键
当然,看到通导融合这一发展趋势的不只是中国。美国也很早就将发展定位导航授时一体的PNT体系上升至国家战略的地位,以弥补原有GPS系统的问题和不足。但除了技术上较量,通导融合“哪家强”,最终还是要在应用上见真章。
“我国建成覆盖4G网络,投资规模超过6000亿元,5G网络的投资规模更是超过了1.2万亿元,但也只能覆盖我国的人口密集区域。而北斗卫星实现全球覆盖投资规模约为600多亿元。我国的5G网络建设投资巨大,也需要在更多的应用场景下寻找更多的商业模式,从而让其为经济社会的发展创造更大的价值。”邓中亮介绍说。
但在邓中亮看来,实验室里的技术创新突破只是第一步,要想让“5G+北斗”产生更大的经济社会价值,需要社会各方面的通力合作,推动商业模式创新和产业化进程,共同挖掘。
《新时代的中国北斗》白皮书也指出,截至2021年,中国卫星导航与位置服务总体产业规模达到约4700亿元,年均复合增长率超过20%。中国北斗广泛应用于经济社会发展各行业各领域,进入交通、能源、农业、通信、气象、自然资源、生态环境、应急减灾等重点行业。中国北斗与大数据、物联网、人工智能等新兴技术深度融合,催生“北斗+”和“+北斗”新业态,支撑经济社会数字化转型和提质增效。
而多家第三方机构预测,按照目前北斗系统的产值增加速度,预计2025年其产业规模有望达到万亿元。来自高德地图的数据也显示,截至2022年11月,高德地图调用北斗卫星日定位量已超过2100亿次,且在定位时北斗的调用率已超越了GPS等其他卫星导航系统。
邓中亮表示,实际上,智慧物流、智慧医疗、智慧城市、智慧交通、工业互联网、智慧农业……北斗已经发挥着巨大的作用。以重点和焦点所在的工业互联网领域为例,这本身就是一个万亿级别的大市场,特别希望有更多有志之士将北斗和5G与人工智能、新兴技术等融合,发展出更多新兴产业,创造更多新的商业模式,为经济发展带来新的增长点。
已经有先行者尝到了甜头。以全国北斗卫星导航应用三大示范区域之一的湖南长沙为例。据长沙市人民政府副市长彭涛在“2022北斗规模应用高峰论坛”上透露,在长沙,北斗技术已成功应用到智能驾驶、驾考驾培、桥梁监测、野生动物追踪、水路安全、防灾减灾、司法、邮政运输、工程机械、公共安全等诸多领域。
长沙正在加快推动“北斗+5G”在智能网联汽车领域应用示范,通过5G网络融合北斗卫星导航系统定位技术,长沙的电动智能网联汽车能够对车辆进行高精度厘米级定位,为自动驾驶进行定位护航。目前,这套系统已在全国400多个城市上千个驾考场地中投入使用。驾考中,车辆是否压线、靠边停车是否在规定范围内,都能轻松判定。
“力争到2025年,长沙市北斗及相关产业规模突破500亿元,其中北斗核心产业规模突破200亿元,创建省级先进制造业集群,力争创建先进制造业集群。”彭涛说。
治疗“绿色癌症”,智能细菌来帮忙******
◎实习记者 骆香茹
炎症性肠病虽然致死率较低,但长期以来,也面临着诊断困难和难以根治的问题,被称为“绿色癌症”。
近日,华东理工大学生物工程学院院长叶邦策教授及该院副教授周英团队在《细胞—宿主与微生物》上发表了一项研究成果。该团队开发了一株智能工程菌——i-ROBOT,可实现在体无创实时监测和记录炎症性肠病的发生与发展,并以自调控的给药模式缓解病症。
各色技术上阵诊断“绿色癌症”
炎症性肠病是胃肠道最常见的慢性炎症性疾病,包括克罗恩病和溃疡性结肠炎。腹痛、腹泻、便血等是炎症性肠病主要的症状表现。
当前炎症性肠病的诊断方法在临床上主要有肠镜、电子微胶囊肠镜等。论文通讯作者叶邦策介绍,肠镜检查的好处是直观,可以观察到人体整个肠道的情况。“但肠镜检查是一项有创检查,在操作过程中难免损伤肠道黏膜,造成少量出血,引起被检者的不适感,患者依从性差。”叶邦策补充道,“也有无痛肠镜,但这种方式有一定风险,做这种检查前需要患者进行全身麻醉,对患有心脏病和肺部疾病的人来说,风险较大。”
电子微胶囊肠镜是近年来新兴的检查方式,叶邦策介绍,与传统肠镜相比,其对患者造成的痛苦更小、适应性更强,能检查传统肠镜无法到达的回肠、空肠等。但胶囊在消化道运动的过程中,无法人为控制其运动轨迹,其在消化道等位置会随机翻转,产生视觉盲区,有可能导致错过病变部位、延误病情等情况发生,且电子微胶囊肠镜的检查费用更高,给患者带来的经济压力更大。
智能工程菌是炎症性肠病的新兴诊断方式之一。叶邦策介绍,他们会提前3天将智能工程菌通过口服灌胃的方式送入小鼠体内,等肠炎造模给药结束后通过分析粪便中存在的智能工程菌的荧光信号和基因组DNA突变情况,确定肠道炎症发生、发展程度。
“智能工程菌在诊断灵敏性、便捷性以及成本上都具有无法比拟的优势,但目前仍仅能通过分析粪便样品来评估疾病的有无或严重程度,而难以实施在体原位诊断。”叶邦策表示,“此外,智能工程菌的生物安全性还需进一步加强。”
治疗方法从抗炎药物到智能活菌机器人
为了攻克炎症性肠病,专家们想了不少办法。过去,炎症性肠病的主要治疗方法是使用抗炎药物和免疫调节药物。叶邦策介绍,随着肠道微生物研究的深入,过去十年间,调节肠道微生态、使用智能活菌成为炎症性肠病的研究热点,创新研究不断涌现。
叶邦策团队开发的i-ROBOT是使用大肠杆菌Nissle1917作为底盘细胞进行改造的。叶邦策介绍,i-ROBOT能够感知低浓度的炎症标志物,具有诊断早期肠炎的潜力。同时,i-ROBOT还能记录疾病发生与发展的信息,帮助监测胃肠道健康状态。
当然,i-ROBOT的功能远不止于此。叶邦策表示,i-ROBOT还可以在病灶部位根据疾病的严重程度释放相应浓度的药物,在实现有效治疗的同时,又能避免因过度用药而产生的副作用。
“我们认为智能工程菌是智能活菌机器人的一种。”叶邦策补充道,“智能工程菌具备优异的感知和收集周围环境信息的能力,能够与周围环境进行互动,并能在特定时间和地点采取特定的行动。”
近年来,“粪便也能治病”的冷知识刷新了不少人的认知,通过粪菌移植治疗炎症性肠病也受到越来越多的关注。粪菌移植是将健康人的肠道菌群植入患者肠道,重建肠道微生态系统,以此治疗肠道疾病。粪菌移植成为炎症性肠病治疗的一种新选择。然而,叶邦策提醒道:“尽管有很多阳性的结果支持粪菌移植的可行性,但是目前一些安全性、伦理性问题尚未得到很好地解决,粪菌移植疗法还存在争议。”
发展交叉学科或可破解炎症性肠病诊疗难题
叶邦策介绍,当前,许多研究证明了智能工程菌具有在活体内诊断和治疗疾病的应用潜力,且智能工程菌逐步朝着智能化和临床应用性的方向发展。其中,功能稳定性、临床效力和安全性是决定智能工程菌能否成功应用于临床的关键。
叶邦策表示:“合成生物学为智能工程菌感应疾病标志物的种类及传感性能提供了很好的策略,然而仅仅依靠合成生物学难以解决所有问题。”
叶邦策认为,交叉学科的发展为此提供了新的契机,例如将合成生物学与材料和化学科学相结合,能够增强智能工程菌的定植性、靶向性和可控性,进而实现炎症部位的在体原位成像检测。
此外,智能工程菌的安全性也是限制其临床应用的重要因素,为了应对智能工程菌可能导致的抗性转移、代谢物毒性等问题,研究者们仍在优化技术方案,通过不使用抗性基因作为筛选标记、选择更安全的益生菌作为智能工程菌的底盘、进行细菌毒力因子的敲除、对逃逸细菌进行有效的控制和清除等策略,有针对性地解决相关难题。
谈到智能工程菌的应用前景时,叶邦策表示,从诊断的角度来说,如果智能工程菌能够通过临床试验,运用到炎症性肠病的临床治疗中,将打破传统肠道疾病的诊断模式,部分替代侵入性的肠镜检测,能让受检者在没有任何痛苦的情况下,诊断出其是否罹患炎症性肠病。
(文图:赵筱尘 巫邓炎)